Technical Specifications - Tundra Refrigerant Dryers							
Fridge	cfm	Conn	Weight	Dimensions	Power	Refrigerant	
Model			Kg	H x L x W mm	Supply		
Tundra 22	22	1/2"	19	408 x 360 x 408	230 / 1 / 50 - 60	R134A	
Tundra 32	32	1/2"	25	445 x 430 x 325	230 / 1 / 50 - 60	R134A	
Tundra 45	45	1/2"	26	445 x 430 x 325	230 / 1 / 50 - 60	R134A	
Tundra 64	64	1/2"	28	445 x 430 x 325	230 / 1 / 50 - 60	R134A	
Tundra 91	91	1"	34	395 x 486 x 565	230 / 1 / 50 - 60	R134A	
Tundra 115	115	1"	40	395 x 486 x 565	230 / 1 / 50 - 60	R134A	
Tundra 175	175	1 1/2"	48	614 x 595 x 485	230 / 1 / 50	R407C	
Tundra 209	209	1 1/2"	49	614 x 595 x 485	230 / 1 / 50	R407C	
Tundra 300	300	1 1/2"	84	967 x 658 x 500	230 / 1 / 50	R407C	
Tundra 360	360	1 1/2"	87	967 x 658 x 500	230 / 1 / 50	R407C	
Tundra 450	450	1 1/2"	117	1195 x 800 x 520	230 / 1 / 50	R407C	
Tundra 595	595	2"	129	1195 x 835 x 520	230 / 1 / 50	R407C	
Tundra 765	765	3"	144	1229 x 835 x 520	400 / 3 / 50	R407C	
Tundra 850	850	3"	234	1539 x 1012 x 806	400 / 3 / 50	R407C	
Tundra 1100	1,100	3"	234	1539 x 1012 x 806	400 / 3 / 50	R407C	
Tundra 1395	1,395	3"	260	1539 x 1012 x 806	400 / 3 / 50	R407C	
Tundra 1700	1,700	DN100	351	1555 x 1390 x 905	400 / 3 / 50	R407C	

HIGH PRESSURE AND THERMAL MASS VERSIONS ARE AVAILABLE TO ORDER

Standard Reference Conditions (in accordance to ISO 7183)

Inlet compressed air pressure: 7 barg Inlet compressed air temperature: 35°C @ 100% RH Ambient air temperature: 25°C Minimum pressure dew point (PDP): +3°C Class 4 (ISO 8573-1)

Capacity Correction for Various Operating Pressure

						-			
Pressure - barg	4	5	6	7	8	10	12	14	16
Factor (Pc)	0.77	0.86	0.93	1	1.05	1.14	1.21	1.27	1.34
Ambient Temperature - °C			20	25	30	35	40	45	50
Factor (Ac)			0.92	1	0.96	0.90	0.82	0.72	0.60
	-								
Inlet Temperature - °C		25	30	35	40	45	50	55	60
Factor (Lc)		1.2	1.12	1	0.83	0.69	0.59	0.50	0.44

Example of dryer selection:

Which dryer is required to handle the following worst-case conditions?

Maximum flow rate of **115cfm**. Lowest operating pressure of 10 barg. Maximum ambient air temperature of 35°c, maximum air inlet temperature of 40°c.

Corrected Capacity is: Actual Capacity: (Pc ÷ Ac ÷ Lc) = 115 ÷ 1.14 ÷ 0.90 ÷ 083 = 135cfm

Dryer selection will be Tundra 175 +3°c PDP

General Information

- Operating pressure range 2 to 16 barg.
- Maximum inlet air temperature 60°c •
- Ambient Air temperature : 0°c to 50°c
- Constant +3°c dewpoint delivered at all times, unlike thermal dryers.
- High pressure range available with pressure up • to 50 barg.
- Dewpoint Indicator as standard, digital on all models.
- Option of Zero Loss or HTD condensate removal.
- High Performance Oil & Particulate Filters to suit dryer range.

NDUSTRIES

ications and details are subje

ll spec

HIGH PERFORMANCE OIL & PARTICULATE FILTERS TO SUIT DRYER RANGE

Filter Housing Data

Technical Specifications - Filter Housings						
Port Connection	Capacity at 7 bar Nm3/h (cfm)	Filter Model	Filter Model			
1/4"	34 (20)	HF20	HE20-N			
1/4"	37 (22)	HF22	HE22-N			
1/2"	42 [25]	HF25	HE25-N			
1/2"	61 (36)	HF36	HE36-N			
1/2"	85 (50)	HF50	HE50-N			
1/2"	122 [72]	HF72	HE72-N			
3/4"	122 (72)	HF75	HE72-N			
1"	204 [120]	HF120	HE120-N			
11/2"	357 (210)	HF210	HE210-N			
11/2"	544 (320)	HF320	HE320-N			
11/2"	850 (500)	HF500	HE500-N			
2"	1070 (630)	HF630	HE630-N			
21/2"	1444 (850)	HF850	HE850-N			
3"	2379 (1400)	HF1400	HE1400-N			
3"	2888 (1700)	HF1700	HE1700-N			

Where N is either 2,3,4 or 5 depending on grade required

FILTER GRADES High Efficiency Pleated Filter Media

GRADE 2	Particle Removal down to 3 micron (99.99%)			
GRADE 3	Oil Removal down to 0.5 mg/m @ 20°C & 7 bar. Particle Removal down to 1 micron (99.999%)			
GRADE 4	Oil Removal down to 0.01 mg/m @ 20°C & 7 bar. Particle Removal down to 0.01 micron (99.9999%)			
GRADE 5	Oil Removal down to 0.003 mg/m @ 20°C & 7 bar.			
Differential Pro	essure Gauge: DP Gauge Optional	All available ex stock,		
Replacement Drains: INTD416		Burton upon Trent		
Example of how	w to order.	Standard Filter	Filter with D/P	
1⁄2" Filter housi	ng, 50cfm. Micron rating 0.01mu	HF50-4	HF50-4D	

E.&.O.E - All filter elements have robust polished Aluminium end caps (NO PLASTIC !!)

NEW ADVANCED, HIGHER FLOW RATE MODELS

Marine Applications Model No's: Tundra 22 through to Tundra 115 are available in 60 Hz ex stock for offshore installations

to change without prior notice

Tundra Refrigerant Air Dryers

Already established for many years as the UK's Market leading supplier for Refrigerant Air Dryers.

The 2018 Tundra range is Hi-line's most energy efficient to date, with a robust and highly reliable build quality.

Minimal energy consumption is crucial in today's competitive environment and the new Tundra dryer from Hi-line will help drive down your energy costs by minimising pressure drop and lowering absorbed power. The Direct Expansion technology offers a constant +3°c dewpoint at all times, unlike chilled mass dryers which can be as high as +10°c during its thermal cycle.

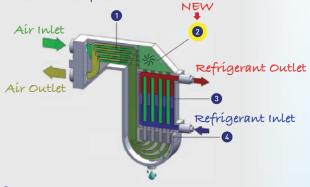
The new improved single cell heat exchanger gives the most efficient transfer of heat at the lowest energy cost. By using proven components within the Tundra refrigerant system reliability is ensured. It also features within that refrigerant system, liquid receivers, line dryers, thermostatic expansion valves and a series of safety features to protect the freon compressor and its components. The Tundra range has been designed to an engineering specification rather than a budget.

Energy Saving Variable Speed Controller

One of the key unique energy saving features of the latest Tundra dryers is the variable speed fan, which is controlled from the microprocessor, multifunctional control panel. By controlling the fan speed on the refrigerant circuit, we have been able to eliminate components like fan pressure switches which often can be the critical components for defects in this type of dryer.

The less moving parts the more reliable we can make the product.

Reliable Design


After significant investment all Hi-line Tundra dryers are now built with Scroll refrigerant freon compressors, which offer the lowest possible power consumption and deliver a cost effective, long life performance.

With reliability at the forefront, Tundra 2018 offers multiple new design features to ensure constant dewpoint at all load levels and will deliver continuous dry air performance that satisfies ISO 7183 industry standards.

Larger dryers up to 9988 cfm are available on short lead-time, although our standard range as featured here are available ex-stock at our Burton factory for next day delivery.

The main part of the refrigeration air dryer is the heat exchanger. This compact aluminium module contains the various stages for the treatment of compressed air.

- Air/air heat exchanger New for 2018 is our Hi-Flo larger port, all aluminium heat exchanger module, where the first phase is carried out. In this section the air coming in is pre-cooled and the air going out is post-heated. This allows the reduction of the energy consumption of the chiller circuit and reduces the possibility of condensate forming on the outer surface of the pipe leaving the dryer and the compressed air network.
- Plow mixing chamber Unlike other exchangers on the market, the module that we have designed has a flow mixing chamber at the outlet of the air/air exchanger. This passage is very important because the air temperatures at the outlet of the air/air exchanger channels are not stable. Mixing enables the air flow to enter the evaporator channels at a uniform temperature, thus allowing optimum exchange.
- 3 Evaporator The air now pre-cooled in the air/air exchanger and mixed in the mixing chamber enters the evaporator and is cooled to dew point. The heat is transferred to the cooling fluid which evaporates.
- Openister The air cooled in the evaporator passes through a demister separator which allows the condensate to drain into a large collecting chamber. The geometry of the module and of the demister allows load loss values to be kept low.

Condensate Removal

The microprocessor controller is linked to the condensate removal valve, to ensure minimum loss of compressed air as the condensate is discharged.

This is fully programmable to climatic conditions and for summer/winter seasons.

The 2018 Tundra also has the option of our ZLD, Zero Loss Auto drain. All condensate should be treated by a ConSEP Oil/Water separator prior to discharge to a foul drain.

